

Coles National Distribution Centre, Melbourne, Australia

Today's building owners and designers need to provide a high level of structural flexibility to meet changing user requirements.

Post-tensioning offers larger spans with reduced structural depth, resulting in larger column-free areas. Internal tenancy layouts are thus not restricted by tight column grids. Positive deflection and crack control and, if necessary, crack-free watertight slabs offer the designer the opportunity to break free of the limitations of the passive methods of reinforced concrete or structural steel.

VSL post-tensioning offers economies over other systems, especially when construction cycles are considered. There is less material handling on site, reducing site labour force which reduces site activity congestion.

CONSTRUCTION SEQUENCE

Installation

Most importantly, there is the quality and service of VSL specialised high-performance site teams and unequalled back-up.

The VSL post-tensioning slab system has been used in many thousands of buildings and other structures throughout Australia. The system uses up to five strands in flat-shaped ducting and anchorages.

Strands are stressed individually and then gripped by wedge action. The entire duct is subsequently fully filled with cement grout injected under pressure so that the strands are fully bonded to the surrounding concrete.

Austrak Industrial Park, Melbourne, Australia

Stressing

Grouting

STRAND PROPERTIES - TO AS 4672

Nominal Diameter	Nominal Steel Area	Nominal Mass	Minimum Breaking Load	Minimum Proof Load (0.2% Offset)	Min Elong Proof Load in 600mm	Relaxation After 1,000hrs at 0.7 Breaking Load	Modulus of Elasticity
(mm)	(mm²)	(kg/m)	(KN)	(kN)	(%)	(%)	(MPa)
12.7 Super	100.1	0.786	184	156.4	3.5	2.5	
15.2 Super	143.3	1.125	250	212.5	3.5	2.5	185-205 x 10 ³
15.2 EHT	143.3	1.125	261	221.9	3.5	2.5	185-205 X 10°

TENDON PROPERTIES

Strand 1	Гуре 12.7m	m Super	Strand 1	ype 15.2m	m Super
Tendon Unit	No. of Strands	Minimum Breaking Load kN	Tendon Unit	No. of Strands	Minimum Breaking Load kN
S5-1	1	184	S6-1	1	250
S5-2	2	368	S6-2	2	500
S5-3	3	552	S6-3	3	750
S5-4	4	736	S6-4	4	1000
S5-5	5	920	S6-5	5	1250

For special applications other strand and tendon capacities are available. Please check with your local VSL office for details

SELECTED DESIGN CONSIDERATIONS

Tendon Supports

Recommended spacings:

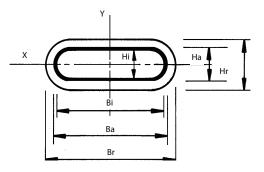
- Conventional steel duct : 0.8 to 1.2m
- PT- PLUS[®] duct : 0.8 to 1.0m
- Minimum radius of curvature for flat ducts : About X axis 2.5m
 About Y axis 7.0m
- Minimum tangent length behind the anchorage 0.5m

Tendon Force Losses

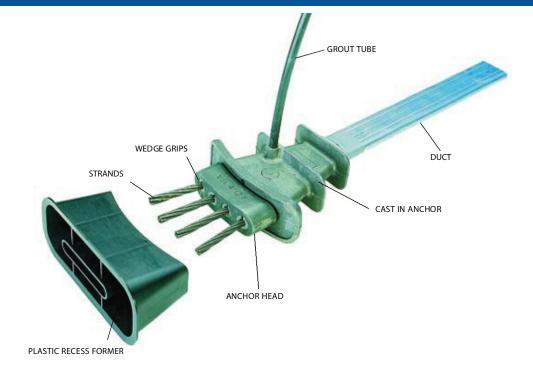
The friction losses in the anchorage due to curvature of the strand and friction of the strand in the wedges usually amount to:

- Edge stressing 3% average
- Internal pocket stressing
 5% average

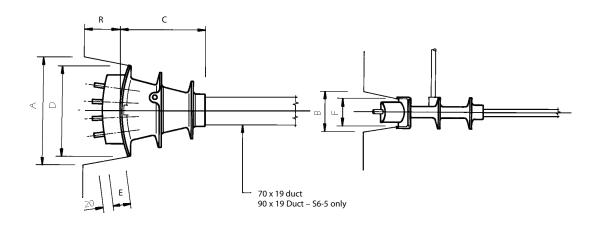
Frictional losses along the tendon can vary fairly widely and depend upon several factors, including the nature and surface condition of the prestressing steel; the type, diameter and surface conditions of the duct and the installation method.

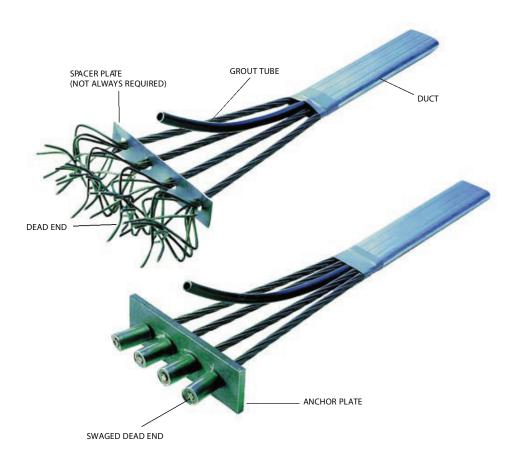

The following values may be assumed for design:

•	Tendon in conventional steel ducts :	$\mu = 0.20$
•	Tendon in PT-PLUS [®] duct :	$\mu = 0.14$

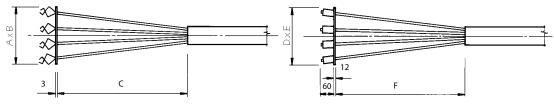

A loss due to wedge draw-in of nominally 6mm occurs at lock-off.

DIMENSION OF DUCTS


DUCT TYPE	Bi	Ва	Br	Hi	На	Hr		
		Dimensions (mm)						
Galv. Steel								
S5-1/S6-1	20	21		20	21			
S5-2/S6-2	50	51		19	20			
S5-5	70	71		19	20			
S6-5	90	91		19	20			
PT-PLUS™								
S5-5/S6-4								
S6-5	72	76	86	21	25	35		
	NOT AVAILABLE							



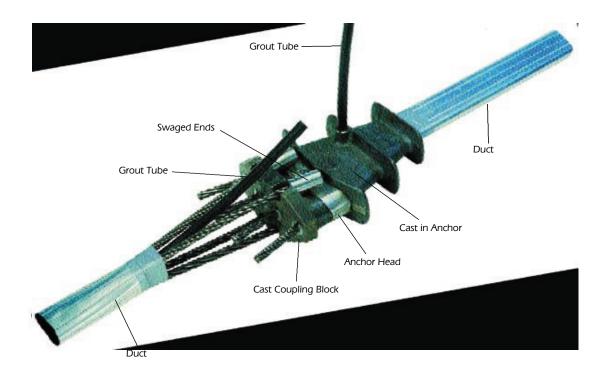
VSL STRESSING ANCHORAGE TYPE S5 - S6 LIVE END



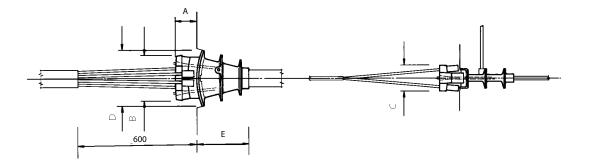
STRAND TYPE	TENDON UNIT	А	В	C D	D imensions (mn	E n)	F	R
	S5-3	265	100	215	225	45	70	90
12.7mm	S5-4	265	100	215	225	45	70	90
	S5-5	265	100	215	225	45	70	90
	S6-2	265	100	215	225	45	70	90
15 2	S6-3	265	100	215	225	45	70	90
15.2mm	S6-4	265	100	215	225	45	70	90
	S6-5	265	100	238	265	45	70	90

Note: 1. S6-2 supplied with barrels and wedges in lieu of cast anchor head

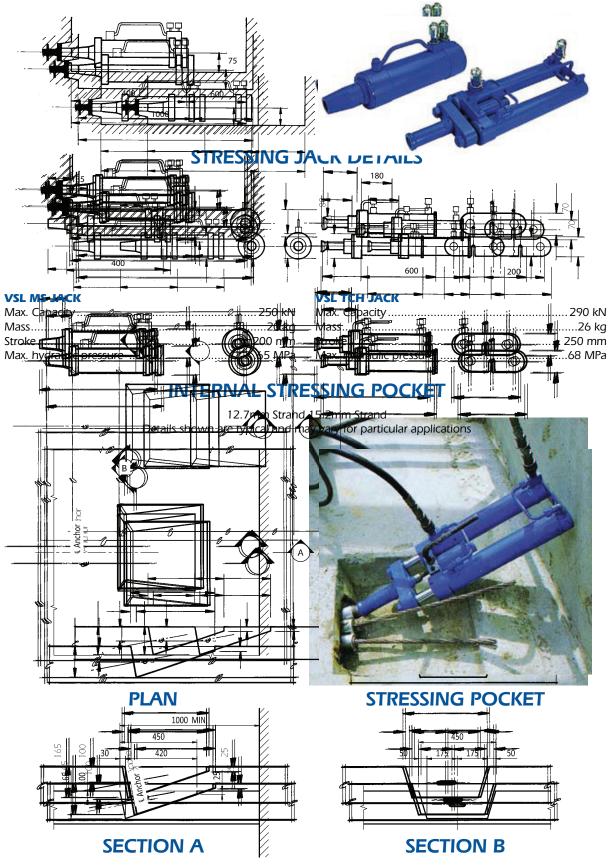
VSL DEAD END ANCHORAGES TYPE H - TYPE P


Dead End Anchorage Type P

Tendon Unit			А	В	С			
Туре Н			Dir	Dimensions (mm)				
	Ē	5-3 5-4	230	50	800			
e S	.7mr	5-4	270	50	800			
Type	12	5-5	350	50	800			
ק'	۲	6-2	135	50	800			
Strand	mm	6-3	230	50	800			
St	15.2	6-4 6-5	270	50	800			
	1	6-5	350	50	800			

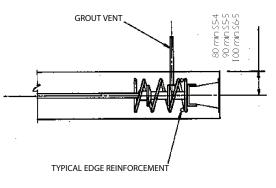

	Tendon Unit Type P			DDir	E nensions (m	F nm)
İ		E	5-3	200	75	300
	ē	7mn	5-4 5-5	250	75	400
ĺ	Type	12.	5-5	300	75	500
	g	٦	6-2	150	75	150
	Strand	Zmm	6-3	225	75	300
	St	15.2	6-4 6-5	300	75	400
		1	6-5	350	75	500

VSL


VSL SLAB COUPLING ANCHORAGE TYPE S

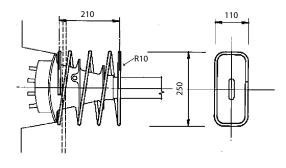
Strand	Tendon	A	В	С	D	E
Туре	Unit		D	imensions (mr	n)	
12 7	S5-4	95	190	110	240	215
12.7mm	S5-5	95	235	110	240	215
15 20000	S6-4	95	190	110	240	215
15.2mm	S6-5	95	235	110	265	238

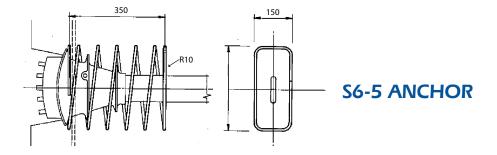
JACK CLEARANCE REQUIREMENTS



YOUR CONSTRUCTION PARTNER

VSL

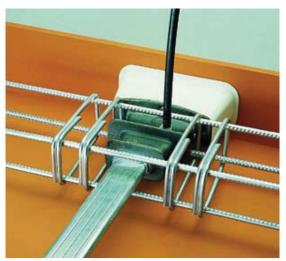

ANCHORAGE REINFORCEMENT - HELIX



DETAIL AT SLAB EDGE

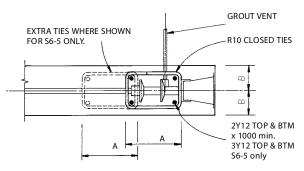
ANCHORAGE AT SLAB EDGE

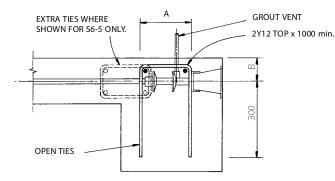
S5-3, S5 - 4, S5-5 ANCHORS S6-3, S6 - 4 ANCHORS



Note: 1. Reinforcement shown is indicative, actual anchorage reinforcement is to be as detailed by the consulting engineer, anchorage reinforcement shall be located centrally about and hard up against cast in anchor as shown

2. Min. concrete cylinder strength at jacking = 22MPa Generally and 25 MPa for S6-5. Reinforcement for helix is round bar with fy = 250MPa

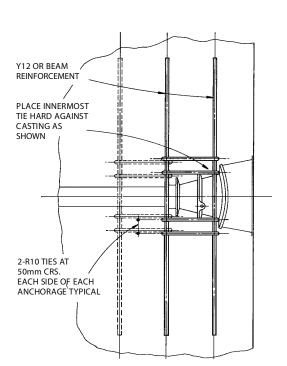

ANCHORAGE REINFORCEMENT - TIES



ANCHORAGE AT SLAB BEAM

ANCHORAGE AT SLAB EDGE

DETAIL AT SLAB EDGE



DETAIL AT SLAB BEAM

Strand Type	Tendon Unit	No. of Ties each side	A Dimensio	B ons (mm)
	S5-2	1	100	60
12.7mm	S5-3, S5-4	2	200	80
	S5-5	2	200	90
	S6-2, S6-3	2	200	90
15.2mm	S6-4	2	200	90
	S6-5	2+2	200	100

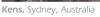
Note: 1. Reinforcement shown is indicative, actual anchorage reinforcement is to be as detailed by the consulting engineer, anchorage reinforcement shall be located centrally about and hard up against cast in anchor as shown

2. Min. concrete cylinder strength at jacking = 22MPa Generally and 25 MPa for S6-5. Reinforcement for helis is round bar with fy = 250 MPa

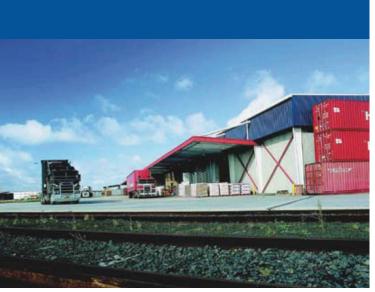
PLAN

Mount Street, North Sydney, Australia

Container Storage Pavement, Melbourne, Australia


90 George Street, Hornsby, Australia

Stadium Australia, Sydney, Australia



AC1, Waterloo, Australia

VSL

Coles Myer, Eastern Creek, Australia

Austrak Industrial Park, Melbourne, Australia

SLAB ON GRADE

The VSL post-tensioning system is widely used in the construction of slabs on grade. Warehouses, distribution centres, container terminals, airports, pavements, residential slabs and recreational slabs for tennis courts and skating rinks are common applications.

ELIMINATE JOINTS

Joints in reinforced concrete slabs on grade have long been a cause of cost and delay to owners because of the constant maintenance requirements. Owners and operators of facilities with slabs on grade can eliminate these costs by eliminating the joints themselves. The VSL post-tensioned concrete slab on grade is cast in very large areas, often exceeding 2,500m² with no joints. In certain applications, slabs in the order of 10,000m² have been constructed without movement joints.

CRACK - FREE PERFORMANCE

VSL post-tensioning axially compresses the concrete slab to counteract tensile stresses which would otherwise cause cracking under the worst combinations of temperature and applied loads. The prestress applied can even control initial concrete shrinkage preventing shrinkage cracking.

Lion Nathan Brewery, Auckland, New Zealand

Mornington Tank, Victoria, Australia

trak Industrial Park, Melbourne, Australia

Lion Nathan Brewery, Auckland, New Zealand

THINNER SLAB

VSL post-tensioned slabs are much thinner than equivalent reinforced concrete slabs. The VSL slab generally contains no reinforcement except at the perimeter and for trimming at penetrations.

INITIAL COST

The thinner slab, absence of reinforcement and costly internal joints and the cost saving available from the construction program time saved by casting large areas, all contribute to a competitive initial cost.

FUTURE MAINTENANCE

During the life of the slab, the joint maintenance costs which the owner no longer need endure, will reap great improvements in the efficiency of the facility.

A life cycle analysis can be readily undertaken to demonstrate that future savings to the owner more than justify the selection of a VSL slab on grade.

tainer Terminal, Port Botany, Australia

Tank Slab, Longreach, Australia

